Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.618
Filtrar
1.
Biochim Biophys Acta Gen Subj ; 1868(6): 130617, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614280

RESUMO

BACKGROUND: Sialylation of glycoproteins, including integrins, is crucial in various cancers and diseases such as immune disorders. These modifications significantly impact cellular functions and are associated with cancer progression. Sialylation, catalyzed by specific sialyltransferases (STs), has traditionally been considered to be regulated at the mRNA level. SCOPE OF REVIEW: Recent research has expanded our understanding of sialylation, revealing ST activity changes beyond mRNA level variations. This includes insights into COPI vesicle formation and Golgi apparatus maintenance and identifying specific target proteins of STs that are not predictable through recombinant enzyme assays. MAJOR CONCLUSIONS: This review summarizes that Golgi-associated pathways largely influence the regulation of STs. GOLPH3, GORAB, PI4K, and FAK have become critical elements in sialylation regulation. Some STs have been revealed to possess specificity for specific target proteins, suggesting the presence of additional, enzyme-specific regulatory mechanisms. GENERAL SIGNIFICANCE: This study enhances our understanding of the molecular interplay in sialylation regulation, mainly focusing on the role of integrin and FAK. It proposes a bidirectional system where sialylations might influence integrins and vice versa. The diversity of STs and their specific linkages offer new perspectives in cancer research, potentially broadening our understanding of cellular mechanisms and opening avenues for new therapeutic approaches in targeting sialylation pathways.


Assuntos
Integrinas , Polissacarídeos , Sialiltransferases , Humanos , Integrinas/metabolismo , Sialiltransferases/metabolismo , Polissacarídeos/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Animais , Complexo de Golgi/metabolismo
2.
Oncol Res ; 32(4): 679-690, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560575

RESUMO

Liver cancer is a prevalent malignant cancer, ranking third in terms of mortality rate. Metastasis and recurrence primarily contribute to the high mortality rate of liver cancer. Hepatocellular carcinoma (HCC) has low expression of focal adhesion kinase (FAK), which increases the risk of metastasis and recurrence. Nevertheless, the efficacy of FAK phosphorylation inhibitors is currently limited. Thus, investigating the mechanisms by which FAK affects HCC metastasis to develop targeted therapies for FAK may present a novel strategy to inhibit HCC metastasis. This study examined the correlation between FAK expression and the prognosis of HCC. Additionally, we explored the impact of FAK degradation on HCC metastasis through wound healing experiments, transwell invasion experiments, and a xenograft tumor model. The expression of proteins related to epithelial-mesenchymal transition (EMT) was measured to elucidate the underlying mechanisms. The results showed that FAK PROTAC can degrade FAK, inhibit the migration and invasion of HCC cells in vitro, and notably decrease the lung metastasis of HCC in vivo. Increased expression of E-cadherin and decreased expression of vimentin indicated that EMT was inhibited. Consequently, degradation of FAK through FAK PROTAC effectively suppressed liver cancer metastasis, holding significant clinical implications for treating liver cancer and developing innovative anti-neoplastic drugs.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Linhagem Celular Tumoral , Prognóstico , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Invasividade Neoplásica/genética , Metástase Neoplásica
3.
Oncol Res ; 32(4): 615-624, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560567

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive solid malignancies. A specific mechanism of its metastasis has not been established. In this study, we investigated whether Neural Wiskott-Aldrich syndrome protein (N-WASP) plays a role in distant metastasis of PDAC. We found that N-WASP is markedly expressed in clinical patients with PDAC. Clinical analysis showed a notably more distant metastatic pattern in the N-WASP-high group compared to the N-WASP-low group. N-WASP was noted to be a novel mediator of epithelial-mesenchymal transition (EMT) via gene expression profile studies. Knockdown of N-WASP in pancreatic cancer cells significantly inhibited cell invasion, migration, and EMT. We also observed positive association of lysyl oxidase-like 2 (LOXL2) and focal adhesion kinase (FAK) with the N-WASP-mediated response, wherein EMT and invadopodia function were modulated. Both N-WASP and LOXL2 depletion significantly reduced the incidence of liver and lung metastatic lesions in orthotopic mouse models of pancreatic cancer. These results elucidate a novel role for N-WASP signaling associated with LOXL2 in EMT and invadopodia function, with respect to regulation of intercellular communication in tumor cells for promoting pancreatic cancer metastasis. These findings may aid in the development of therapeutic strategies against pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Neoplasias Pancreáticas/patologia , Transdução de Sinais , Proteína da Síndrome de Wiskott-Aldrich/metabolismo
4.
BMC Cancer ; 24(1): 334, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475740

RESUMO

BACKGROUND: Ribosomal RNA processing protein 15 (RRP15) has been found to regulate the progression of hepatocellular carcinoma (HCC). Nevertheless, the extent to which it contributes to the spread of HCC cells remains uncertain. Thus, the objective of this research was to assess the biological function of RRP15 in the migration of HCC. METHODS: The expression of RRP15 in HCC tissue microarray (TMA), tumor tissues and cell lines were determined. In vitro, the effects of RRP15 knockdown on the migration, invasion and adhesion ability of HCC cells were assessed by wound healing assay, transwell and adhesion assay, respectively. The effect of RRP15 knockdown on HCC migration was also evaluated in vivo in a mouse model. RESULTS: Bioinformatics analysis showed that high expression of RRP15 was significantly associated with low survival rate of HCC. The expression level of RRP15 was strikingly upregulated in HCC tissues and cell lines compared with the corresponding controls, and TMA data also indicated that RRP15 was a pivotal prognostic factor for HCC. RRP15 knockdown in HCC cells reduced epithelial-to-mesenchymal transition (EMT) and inhibited migration in vitro and in vivo, independent of P53 expression. Mechanistically, blockade of RRP15 reduced the protein level of the transcription factor POZ/BTB and AT hook containing zinc finger 1 (PATZ1), resulting in decreased expression of the downstream genes encoding laminin 5 subunits, LAMC2 and LAMB3, eventually suppressing the integrin ß4 (ITGB4)/focal adhesion kinase (FAK)/nuclear factor κB kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway. CONCLUSIONS: RRP15 promotes HCC migration by activating the LAMC2/ITGB4/FAK pathway, providing a new target for future HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Processamento Pós-Transcricional do RNA , Proteínas Ribossômicas , Animais , Camundongos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , NF-kappa B/metabolismo , Ribossomos/metabolismo , Ribossomos/patologia , Fatores de Transcrição/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
5.
J Cancer Res Clin Oncol ; 150(3): 117, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38460052

RESUMO

PURPOSE: This study investigated the potential applicability and the underlying mechanisms of flavokawain C, a natural compound derived from kava extracts, in liver cancer treatment. METHODS: Drug distribution experiment used to demonstrate the preferential tissues enrichment of flavokawain C. Cell proliferation, apoptosis and migration effect of flavokawain C were determined by MTT, colony formation, EdU staining, cell adhesion, transwell, flow cytometry and western blot assay. The mechanism was explored by comet assay, immunofluorescence assay, RNA-seq-based Kyoto encyclopedia of genes and genomes analysis, molecular dynamics, bioinformatics analysis and western blot assay. The anticancer effect of flavokawain C was further confirmed by xenograft tumor model. RESULTS: The studies first demonstrated the preferential enrichment of flavokawain C within liver tissues in vivo. The findings demonstrated that flavokawain C significantly inhibited proliferation and migration of liver cancer cells, induced cellular apoptosis, and triggered intense DNA damage along with strong DNA damage response. The findings from RNA-seq-based KEGG analysis, molecular dynamics, bioinformatics analysis, and western blot assay mechanistically indicated that treatment with flavokawain C notably suppressed the FAK/PI3K/AKT signaling pathway in liver cancer cells. This effect was attributed to the induction of gene changes and the binding of flavokawain C to the ATP sites of FAK and PI3K, resulting in the inhibition of their phosphorylation. Additionally, flavokawain C also displayed the strong capacity to inhibit Huh-7-derived xenograft tumor growth in mice with minimal adverse effects. CONCLUSIONS: These findings identified that flavokawain C is a promising anticancer agent for liver cancer treatment.


Assuntos
Chalconas , Neoplasias Hepáticas , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Camundongos , Apoptose , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Chalconas/farmacologia , Chalconas/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/efeitos dos fármacos
6.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542070

RESUMO

Monomeric C-reactive protein (mCRP) has recently been implicated in the abnormal vascular activation associated with development of atherosclerosis, but it may act more specifically through mechanisms perpetuating damaged vessel inflammation and subsequent aggregation and internalization of resident macrophages. Whilst the direct effects of mCRP on endothelial cells have been characterized, the interaction with blood monocytes has, to our knowledge, not been fully defined. Here we showed that mCRP caused a strong aggregation of both U937 cell line and primary peripheral blood monocytes (PBMs) obtained from healthy donors. Moreover, this increase in clustering was dependent on focal adhesion kinase (FAK) activation (blocked by a specific inhibitor), as was the concomitant adhesive attachment to the plate, which was suggestive of macrophage differentiation. Confocal microscopy confirmed the increased expression and nuclear localization of p-FAK, and cell surface marker expression associated with M1 macrophage polarization (CD11b, CD14, and CD80, as well as iNOS) in the presence of mCRP. Inclusion of a specific CRP dissociation/mCRP inhibitor (C10M) effectively inhibited PBMs clustering, as well as abrogating p-FAK expression, and partially reduced the expression of markers associated with M1 macrophage differentiation. mCRP also increased the secretion of pro-inflammatory cytokines Interleukin-8 (IL-8) and Interleukin-1ß (IL-1ß), without notably affecting MAP kinase signaling pathways; inclusion of C10M did not perturb or modify these effects. In conclusion, mCRP modulates PBMs through a mechanism that involves FAK and results in cell clustering and adhesion concomitant with changes consistent with M1 phenotypical polarization. C10M has potential therapeutic utility in blocking the primary interaction of mCRP with the cells-for example, by protecting against monocyte accumulation and residence at damaged vessels that may be predisposed to plaque development and atherosclerosis.


Assuntos
Aterosclerose , Proteína C-Reativa , Humanos , Proteína C-Reativa/metabolismo , Monócitos/metabolismo , Inflamação/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Células Endoteliais/metabolismo , Células U937 , Aterosclerose/metabolismo
7.
Molecules ; 29(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542861

RESUMO

Tumor diagnosis, especially at the early stages, holds immense significance. Focal adhesion kinase (FAK) is often highly expressed across various types of tumors, making it a promising target for both therapy and diagnosis. In this study, seven novel inhibitors were designed and synthesized. The inhibitory activity of these compounds against FAK was notably potent, with an IC50 range of 1.27-1968 nM. In particular, compounds 7a and 7c, with IC50 values of 5.59 nM and 1.27 nM, respectively, were radiolabeled with F-18 and then evaluated with S-180 tumor-bearing mice. Subsequently, they exhibited moderate-to-high tumor uptake values, with [18F]7a showing 1.39 ± 0.30%ID/g at 60 min post injection and [18F]7c demonstrating 6.58 ± 0.46%ID/g at 30 min post injection. In addition, the results from docking studies revealed the binding specifics of the studied compounds. Overall, these findings hold the potential to offer valuable guidance for enhancing the development of radiotracers and enzyme inhibitors.


Assuntos
Antineoplásicos , Neoplasias , Camundongos , Animais , Proteína-Tirosina Quinases de Adesão Focal , Simulação de Acoplamento Molecular , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Compostos Radiofarmacêuticos/química , Transporte Biológico , Inibidores de Proteínas Quinases/química , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Antineoplásicos/química
8.
Med ; 5(4): 348-367.e7, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38521069

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) cancer cells specifically produce abnormal oncogenic collagen to bind with integrin α3ß1 receptor and activate the downstream focal adhesion kinase (FAK), protein kinase B (AKT), and mitogen-activated protein kinase (MAPK) signaling pathway. Collectively, this promotes immunosuppression and tumor proliferation and restricts the response rate of clinical cancer immunotherapies. METHODS: Here, by leveraging the hypoxia tropism and excellent motility of the probiotic Escherichia coli strain Nissle 1917 (ECN), we developed nanodrug-bacteria conjugates to penetrate the extracellular matrix (ECM) and shuttle the surface-conjugated protein cages composed of collagenases and anti-programmed death-ligand 1 (PD-L1) antibodies to PDAC tumor parenchyma. FINDINGS: We found the oncogenic collagen expression in human pancreatic cancer patients and demonstrated its interaction with integrin α3ß1. We proved that reactive oxygen species (ROS) in the microenvironment of PDAC triggered collagenase release to degrade oncogenic collagen and block integrin α3ß1-FAK signaling pathway, thus overcoming the immunosuppression and synergizing with anti-PD-L1 immunotherapy. CONCLUSIONS: Collectively, our study highlights the significance of oncogenic collagen in PDAC immunotherapy, and consequently, we developed a therapeutic strategy that can deplete oncogenic collagen to synergize with immune checkpoint blockade for enhanced PDAC treatment efficacy. FUNDING: This work was supported by the University of Wisconsin Carbone Cancer Center Research Collaborative and Pancreas Cancer Research Task Force, UWCCC Transdisciplinary Cancer Immunology-Immunotherapy Pilot Project, and the start-up package from the University of Wisconsin-Madison (to Q.H.).


Assuntos
Carcinoma Ductal Pancreático , Nanopartículas , Neoplasias Pancreáticas , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Integrina alfa3beta1 , Projetos Piloto , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Colágeno , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Microambiente Tumoral
9.
ACS Appl Mater Interfaces ; 16(8): 9944-9955, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38354103

RESUMO

The complex interplay between cells and materials is a key focus of this research, aiming to develop optimal scaffolds for regenerative medicine. The need for tissue regeneration underscores understanding cellular behavior on scaffolds, especially cell adhesion to polymer fibers forming focal adhesions. Key proteins, paxillin and vinculin, regulate cell signaling, migration, and mechanotransduction in response to the extracellular environment. This study utilizes advanced microscopy, specifically the AiryScan technique, along with advanced image analysis employing the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) cluster algorithm, to investigate protein distribution during osteoblast cell adhesion to polymer fibers and glass substrates. During cell attachment to both glass and polymer fibers, a noticeable shift in the local maxima of paxillin and vinculin signals is observed at the adhesion sites. The focal adhesion sites on polymer fibers are smaller and elliptical but exhibit higher protein density than on the typical glass surface. The characteristics of focal adhesions, influenced by paxillin and vinculin, such as size and density, can potentially reflect the strength and stability of cell adhesion. Efficient adhesion correlates with well-organized, larger focal adhesions characterized by increased accumulation of paxillin and vinculin. These findings offer promising implications for enhancing scaffold design, evaluating adhesion to various substrates, and refining cellular interactions in biomedical applications.


Assuntos
Adesões Focais , Mecanotransdução Celular , Paxilina/metabolismo , Vinculina/metabolismo , Adesões Focais/metabolismo , Adesão Celular/fisiologia , Polímeros/metabolismo , Fosfoproteínas/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo
10.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38396816

RESUMO

Focal adhesions (FAs) play a crucial role in cell spreading and adhesion, and their autophagic degradation is an emerging area of interest. This study investigates the role of Thrombospondin Type 1 Domain-Containing Protein 1 (THSD1) in regulating autophagy and FA stability in brain endothelial cells, shedding light on its potential implications for cerebrovascular diseases. Our research reveals a physical interaction between THSD1 and FAs. Depletion of THSD1 significantly reduces FA numbers, impairing cell spreading and adhesion. The loss of THSD1 also induces autophagy independently of changes in mTOR and AMPK activation, implying that THSD1 primarily governs FA dynamics rather than serving as a global regulator of nutrient and energy status. Mechanistically, THSD1 negatively regulates Beclin 1, a central autophagy regulator, at FAs through interactions with focal adhesion kinase (FAK). THSD1 inactivation diminishes FAK activity and relieves its inhibitory phosphorylation on Beclin 1. This, in turn, promotes the complex formation between Beclin 1 and ATG14, a critical event for the activation of the autophagy cascade. In summary, our findings identify THSD1 as a novel regulator of autophagy that degrades FAs in brain endothelial cells. This underscores the distinctive nature of THSD1-mediated, cargo-directed autophagy and its potential relevance to vascular diseases due to the loss of endothelial FAs. Investigating the underlying mechanisms of THSD1-mediated pathways holds promise for discovering novel therapeutic targets in vascular diseases.


Assuntos
Adesões Focais , Trombospondinas , Doenças Vasculares , Humanos , Autofagia , Proteína Beclina-1/metabolismo , Células Endoteliais/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Adesões Focais/metabolismo , Fosforilação , Doenças Vasculares/metabolismo , Trombospondinas/metabolismo
11.
Respir Physiol Neurobiol ; 323: 104237, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38354845

RESUMO

The airway epithelium serves as a critical interface with the external environment, making it vulnerable to various external stimuli. Airway epithelial stress acts as a catalyst for the onset of numerous pulmonary and systemic diseases. Our previous studies have highlighted the impact of acute stress stimuli, especially bacterial lipopolysaccharide (LPS) and hydrogen peroxide (H2O2), on the continuous elevation of intracellular chloride concentration ([Cl-]i). However, the precise mechanism behind this [Cl-]i elevation and the consequential effects of such stress on the injury repair function of airway epithelial cells remain unclear. Our findings indicate that H2O2 induces an elevation in [Cl-]i by modulating the expression of CF transmembrane conductance regulator (CFTR) and Ca-activated transmembrane protein 16 A (TMEM16A) in airway epithelial cells (BEAS-2B), whereas LPS achieves this solely through CFTR. Subsequently, the elevated [Cl-]i level facilitated the injury repair process of airway epithelial cells by activating focal adhesion kinase (FAK). In summary, the [Cl-]i-FAK axis appears to play a promoting effect on the injury repair process triggered by stress stimulation. Furthermore, our findings suggest that abnormalities in the [Cl-]i-FAK signaling axis may play a crucial role in the pathogenesis of chronic airway diseases. Therefore, controlling the structure and function of airway epithelial barriers through the modulation of [Cl-]i holds promising prospects for future applications in managing and treating such conditions.


Assuntos
Cloretos , Regulador de Condutância Transmembrana em Fibrose Cística , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Cloretos/metabolismo , Cloretos/farmacologia , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Células Epiteliais/metabolismo
12.
J Exp Clin Cancer Res ; 43(1): 51, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373953

RESUMO

BACKGROUNDS: Immune checkpoint blockade (ICB) is widely considered to exert long-term treatment benefits by activating antitumor immunity. However, many cancer patients show poor clinical responses to ICB due in part to the lack of an immunogenic niche. Focal adhesion kinase (FAK) is frequently amplified and acts as an immune modulator across cancer types. However, evidence illustrates that targeting FAK is most effective in combination therapy rather than in monotherapy. METHODS: Here, we used drug screening, in vitro and in vivo assays to filter out that doxorubicin and its liposomal form pegylated liposome doxorubicin (PLD) showed synergistic anti-tumor effects in combination with FAK inhibitor IN10018. We hypothesized that anti-tumor immunity and immunogenic cell death (ICD) may be involved in the treatment outcomes through the data analysis of our clinical trial testing the combination of IN10018 and PLD. We then performed cell-based assays and animal studies to detect whether FAK inhibition by IN10018 can boost the ICD of PLD/doxorubicin and further established syngeneic models to test the antitumor effect of triplet combination of PLD, IN10018, and ICB. RESULTS: We demonstrated that the combination of FAK inhibitor IN10018, and PLD/doxorubicin exerted effective antitumor activity. Notably, the doublet combination regimen exhibited response latency and long-lasting treatment effects clinically, outcomes frequently observed in immunotherapy. Our preclinical study confirmed that the 2-drug combination can maximize the ICD of cancer cells. This approach primed the tumor microenvironment, supplementing it with sufficient tumor-infiltrating lymphocytes (TILs) to activate antitumor immunity. Finally, different animal studies confirmed that the antitumor effects of ICB can be significantly enhanced by this doublet regimen. CONCLUSIONS: We confirmed that targeting FAK by IN10018 can enhance the ICD of PLD/doxorubicin, further benefiting the anti-tumor effect of ICB. The animal tests of the triplet regimen warrant further discovery in the real world.


Assuntos
Lipossomos , Neoplasias , Animais , Humanos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/uso terapêutico , Morte Celular Imunogênica , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Polietilenoglicóis , Microambiente Tumoral
13.
Biochem Biophys Res Commun ; 703: 149575, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38382357

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy, with a median survival of less than 12 months and a 5-year survival of less than 10 %. Here, we have established an image-based screening pipeline for quantifying single PDAC spheroid dynamics in genetically and phenotypically diverse PDAC cell models. Wild-type KRas PDAC cells formed tight/compact spheroids - compaction of these structures was completely blocked by cytoplasmic dynein and focal adhesion kinase (FAK) inhibitors. In contrast, PDAC cells containing mutant KRas formed loosely aggregated spheroids that grew significantly slower following inhibition of polo-like kinase 1 (PLK1) or focal adhesion kinase (FAK). Independent of genetic background, multicellular PDAC-mesenchymal stromal cell (MSC) spheroids self-organized into structures with an MSC-dominant core. The inclusion of MSCs into wild-type KRas PDAC spheroids modestly affected their compaction; however, MSCs significantly increased the compaction and growth of mutant KRas PDAC spheroids. Notably, exogenous collagen 1 potentiated PANC1 spheroid compaction while ITGA1 knockdown in PANC1 cells blocked MSC-induced PANC1 spheroid compaction. In agreement with a role for collagen-based integrin adhesion complexes in stromal cell-induced PDAC phenotypes, we also discovered that MSC-induced PANC1 spheroid growth was completely blocked by the ITGB1 immunoneutralizing antibody mAb13. Finally, multiplexed single-cell immunohistochemical analysis of a 25 patient PDAC tissue microarray revealed a relationship between decreased variance in Spearman r correlation for ITGA1 and PLK1 expression within the tumor cell compartment of PDAC in patients with advanced disease stage, and elevated expression of both ITGA1 and PLK1 in PDAC was found to be associated with decreased patient survival. Taken together, this work uncovers new therapeutic vulnerabilities in PDAC that are relevant to the progression of this stromal cell-rich malignancy and which may reveal strategies for improving patient outcomes.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Detecção Precoce de Câncer , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Colágeno/metabolismo , Junções Célula-Matriz/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Linhagem Celular Tumoral
14.
Pathol Oncol Res ; 30: 1611571, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38312516

RESUMO

Objectives: Integrins are heterodimeric transmembrane plasma membrane proteins composed of α- and ß-chains. They bind to extracellular matrix (ECM) and cytoskeletal proteins as ECM protein receptors. Upon ECM protein binding, integrins activate focal adhesion kinase (FAK) and transduce various signals. Despite their importance, integrin and FAK expression in oral squamous cell carcinoma (OSCC) tissue and the prognosis of patients with OSCC remains elusive. Methods: In a retrospective observational study, we immunohistochemically evaluated integrin αV, ß1, ß3, ß5, ß6, FAK, and phosphorylated-FAK (pFAK) expressions as prognostic predictors in 96 patients with OSCC. Patients were classified as positive or negative based on staining intensity, and clinicopathologic characteristics and survival rates of the two groups were compared. The association between above integrin-related proteins and PD-1 or PD-L1 in OSCC tissues was investigated. Results: We observed immunohistochemical integrin αV, ß1, ß6, ß8, and FAK expressions in the cell membrane and cytoplasm but not integrin ß3 and ß5 in the OSCC tissues. pFAK was expressed in the cytoplasm of OSCC cells. The overall survival rate significantly decreased in pFAK-positive OSCC patients compared to the negative group, and cervical lymph node metastasis significantly increased in integrin ß8-positive patients with OSCC (p < 0.05). No association between integrin-related proteins and PD-1 or PD-L1 in OSCC tissues was observed. Conclusion: Our results indicate that pFAK and integrin ß8 are prognostic factors for OSCC. Therefore, pFAK- and integrin ß8-targeting new oral cancer diagnostic and therapeutic methods hold a promising potential.


Assuntos
Neoplasias Bucais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Antígeno B7-H1 , Relevância Clínica , Proteína-Tirosina Quinases de Adesão Focal/uso terapêutico , Integrina alfaV/metabolismo , Integrinas/metabolismo , Neoplasias Bucais/patologia , Receptor de Morte Celular Programada 1 , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
15.
Adv Sci (Weinh) ; 11(14): e2306497, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311584

RESUMO

Cell migration interacting with continuously changing microenvironment, is one of the most essential cellular functions, participating in embryonic development, wound repair, immune response, and cancer metastasis. The migration process is finely tuned by integrin-mediated binding to ligand molecules. Although numerous biochemical pathways orchestrating cell adhesion and motility are identified, how subcellular forces between the cell and extracellular matrix regulate intracellular signaling for cell migration remains unclear. Here, it is showed that a molecular binding force across integrin subunits determines directional migration by regulating tension-dependent focal contact formation and focal adhesion kinase phosphorylation. Molecular binding strength between integrin αvß3 and fibronectin is precisely manipulated by developing molecular tension probes that control the mechanical tolerance applied to cell-substrate interfaces. This data reveals that integrin-mediated molecular binding force reduction suppresses cell spreading and focal adhesion formation, attenuating the focal adhesion kinase (FAK) phosphorylation that regulates the persistence of cell migration. These results further demonstrate that manipulating subcellular binding forces at the molecular level can recapitulate differential cell migration in response to changes of substrate rigidity that determines the physical condition of extracellular microenvironment. Novel insights is provided into the subcellular mechanics behind global mechanical adaptation of the cell to surrounding tissue environments featuring distinct biophysical signatures.


Assuntos
Integrinas , Ligantes , Proteína-Tirosina Quinases de Adesão Focal , Adesão Celular/fisiologia , Movimento Celular
16.
J Neurosci ; 44(11)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38326036

RESUMO

Intercellular adhesion molecule-1 (ICAM-1) is identified as an initiator of neuroinflammatory responses that lead to neurodegeneration and cognitive and sensory-motor deficits in several pathophysiological conditions including traumatic brain injury (TBI). However, the underlying mechanisms of ICAM-1-mediated leukocyte adhesion and transmigration and its link with neuroinflammation and functional deficits following TBI remain elusive. Here, we hypothesize that blocking of ICAM-1 attenuates the transmigration of leukocytes to the brain and promotes functional recovery after TBI. The experimental TBI was induced in vivo by fluid percussion injury (25 psi) in male and female wild-type and ICAM-1-/- mice and in vitro by stretch injury (3 psi) in human brain microvascular endothelial cells (hBMVECs). We treated hBMVECs and animals with ICAM-1 CRISPR/Cas9 and conducted several biochemical analyses and demonstrated that CRISPR/Cas9-mediated ICAM-1 deletion mitigates blood-brain barrier (BBB) damage and leukocyte transmigration to the brain by attenuating the paxillin/focal adhesion kinase (FAK)-dependent Rho GTPase pathway. For analyzing functional outcomes, we used a cohort of behavioral tests that included sensorimotor functions, psychological stress analyses, and spatial memory and learning following TBI. In conclusion, this study could establish the significance of deletion or blocking of ICAM-1 in transforming into a novel preventive approach against the pathophysiology of TBI.


Assuntos
Lesões Encefálicas Traumáticas , Molécula 1 de Adesão Intercelular , Animais , Feminino , Humanos , Masculino , Camundongos , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Sistemas CRISPR-Cas , Células Endoteliais/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Leucócitos , Paxilina , Proteínas rho de Ligação ao GTP/metabolismo
17.
Cell Death Dis ; 15(2): 108, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302407

RESUMO

The prognosis of osteosarcoma (OS) has remained stagnant over the past two decades, requiring the exploration of new therapeutic targets. Cytokines, arising from tumor-associated macrophages (TAMs), a major component of the tumor microenvironment (TME), have garnered attention owing to their impact on tumor growth, invasion, metastasis, and resistance to chemotherapy. Nonetheless, the precise functional role of TAMs in OS progression requires further investigation. In this study, we investigated the interaction between OS and TAMs, as well as the contribution of TAM-produced cytokines to OS advancement. TAMs were observed to be more prevalent in lung metastases compared with that in primary tumors, suggesting their potential support for OS progression. To simulate the TME, OS and TAMs were co-cultured, and the cytokines resulting from this co-culture could stimulate OS proliferation, migration, and invasion. A detailed investigation of cytokines in the co-culture conditioned medium (CM) revealed a substantial increase in IL-8, establishing it as a pivotal cytokine in the process of enhancing OS proliferation, migration, and invasion through the focal adhesion kinase (FAK) pathway. In an in vivo model, co-culture CM promoted OS proliferation and lung metastasis, effects that were mitigated by anti-IL-8 antibodies. Collectively, IL-8, generated within the TME formed by OS and TAMs, accelerates OS proliferation and metastasis via the FAK pathway, thereby positioning IL-8 as a potential novel therapeutic target in OS.


Assuntos
Neoplasias Ósseas , Neoplasias Pulmonares , Osteossarcoma , Humanos , Macrófagos Associados a Tumor/metabolismo , Interleucina-8/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Macrófagos/metabolismo , Neoplasias Pulmonares/patologia , Osteossarcoma/patologia , Citocinas/metabolismo , Neoplasias Ósseas/metabolismo , Microambiente Tumoral , Linhagem Celular Tumoral , Movimento Celular
18.
Mol Cancer ; 23(1): 33, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355583

RESUMO

BACKGROUND: Circular RNAs are highly stable regulatory RNAs that have been increasingly associated with tumorigenesis and progression. However, the role of many circRNAs in triple-negative breast cancer (TNBC) and the related mechanisms have not been elucidated. METHODS: In this study, we screened circRNAs with significant expression differences in the RNA sequencing datasets of TNBC and normal breast tissues and then detected the expression level of circRPPH1 by qRT‒PCR. The biological role of circRPPH1 in TNBC was then verified by in vivo and in vitro experiments. Mechanistically, we verified the regulatory effects between circRPPH1 and ZNF460 and between circRPPH1 and miR-326 by chromatin immunoprecipitation (ChIP), fluorescence in situ hybridization assay, dual luciferase reporter gene assay and RNA pull-down assay. In addition, to determine the expression of associated proteins, we performed immunohistochemistry, immunofluorescence, and western blotting. RESULTS: The upregulation of circRPPH1 in TNBC was positively linked with a poor prognosis. Additionally, both in vivo and in vitro, circRPPH1 promoted the biologically malignant behavior of TNBC cells. Additionally, circRPPH1 may function as a molecular sponge for miR-326 to control integrin subunit alpha 5 (ITGA5) expression and activate the focal adhesion kinase (FAK)/PI3K/AKT pathway. CONCLUSION: Our research showed that ZNF460 could promote circRPPH1 expression and that the circRPPH1/miR-326/ITGA5 axis could activate the FAK/PI3K/AKT pathway to promote the progression of TNBC. Therefore, circRPPH1 can be used as a therapeutic or diagnostic target for TNBC.


Assuntos
MicroRNAs , Fatores de Transcrição , Neoplasias de Mama Triplo Negativas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , 60414 , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , RNA Circular/genética , Hibridização in Situ Fluorescente , Linhagem Celular Tumoral , Integrinas/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Proteínas de Ligação a DNA/metabolismo
19.
Cells ; 13(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38334670

RESUMO

Truncating mutations in filamin C (FLNC) are associated with dilated cardiomyopathy and arrhythmogenic cardiomyopathy. FLNC is an actin-binding protein and is known to interact with transmembrane and structural proteins; hence, the ablation of FLNC in cardiomyocytes is expected to dysregulate cell adhesion, cytoskeletal organization, sarcomere structural integrity, and likely nuclear function. Our previous study showed that the transcriptional profiles of FLNC homozygous deletions in human pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are highly comparable to the transcriptome profiles of hiPSC-CMs from patients with FLNC truncating mutations. Therefore, in this study, we used CRISPR-Cas-engineered hiPSC-derived FLNC knockout cardiac myocytes as a model of FLNC cardiomyopathy to determine pathogenic mechanisms and to examine structural changes caused by FLNC deficiency. RNA sequencing data indicated the significant upregulation of focal adhesion signaling and the dysregulation of thin filament genes in FLNC-knockout (FLNCKO) hiPSC-CMs compared to isogenic hiPSC-CMs. Furthermore, our findings suggest that the complete loss of FLNC in cardiomyocytes led to cytoskeletal defects and the activation of focal adhesion kinase. Pharmacological inhibition of PDGFRA signaling using crenolanib (an FDA-approved drug) reduced focal adhesion kinase activation and partially normalized the focal adhesion signaling pathway. The findings from this study suggest the opportunity in repurposing FDA-approved drug as a therapeutic strategy to treat FLNC cardiomyopathy.


Assuntos
Cardiomiopatias , Filaminas , Células-Tronco Pluripotentes Induzidas , Humanos , Cardiomiopatias/metabolismo , Filaminas/genética , Filaminas/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Sarcômeros/metabolismo , Transdução de Sinais
20.
Int J Biol Sci ; 20(1): 231-248, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164166

RESUMO

Head and neck squamous cell carcinoma (HNSCC) remains a formidable clinical challenge due to its high recurrence rate and limited targeted therapeutic options. This study aims to elucidate the role of tensin 4 (TNS4) in the pathogenesis of HNSCC across clinical, cellular, and animal levels. We found a significant upregulation of TNS4 expression in HNSCC tissues compared to normal controls. Elevated levels of TNS4 were associated with adverse clinical outcomes, including diminished overall survival. Functional assays revealed that TNS4 knockdown attenuated, and its overexpression augmented, the oncogenic capabilities of HNSCC cells both in vitro and in vivo. Mechanistic studies revealed that TNS4 overexpression promotes the interaction between integrin α5 and integrin ß1, thereby activating focal adhesion kinase (FAK). This TNS4-mediated FAK activation simultaneously enhanced the PI3K/Akt signaling pathway and facilitated the interaction between TGFßRI and TGFßRII, leading to the activation of the TGFß signaling pathway. Both of these activated pathways contributed to HNSCC tumorigenesis. Additionally, we found that hypoxia-inducible factor 1α (HIF-1α) transcriptionally regulated TNS4 expression. In conclusion, our findings provide the basis for innovative TNS4-targeted therapeutic strategies, which could potentially improve prognosis and survival rates for patients with HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Integrina alfa5beta1 , Fator de Crescimento Transformador beta , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/genética , Transformação Celular Neoplásica , Hipóxia , Neoplasias de Cabeça e Pescoço/genética , Linhagem Celular Tumoral , Tensinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...